“杀死”病毒的六种方法:哪款最适合新冠病毒?
人类的发展历史也是一部病毒抗争史,回顾历史长河,病毒已对人类展开过无数次猛烈的进攻。根据推测,天花病毒在一万多年前就已经出现,直到1980年之前一直在世界各地横行。天花致死率很高,仅在20世纪就造成全世界约3亿人死亡[1]。流感病毒在近一百多年也多次肆虐全球,仅1918年的西班牙大流感便夺去了数以千万计的生命[2]。此外,人类免疫缺陷病毒(俗称“艾滋病毒”)、埃博拉病毒、肝炎病毒依旧对人类虎视眈眈,当前新型冠状病毒也因其突变株的不断出现而持续表现出强劲的传播特性。截至目前,本次新冠疫情的死亡人数也已经上升到人类历史上病毒瘟疫致死人数的第三位(自Wikipedia)。面对这个看不见的敌人,人类仿佛显得有些被动,难道我们不能主动去“杀死”病毒吗?
其实在还未认识病毒时,人类就已经摸石头过河,摸索出了一些“杀死”病毒的方法。我国古代医学对此也有所记载,有些方法现在来看仍具有科学指导意义。如李时珍在《本草纲目》中记载的“天气瘟疫,取出病人衣服于甑上蒸过,则一家不染”就是利用高温“杀死”病毒的例子。随着生物学、物理学、现代医学和化学的进步,人类对病毒的认知也从原来的“邪气”、“上帝的惩罚”到现在的“一种专营寄生的微小生物颗粒”,这也为“杀死”病毒的手段开发提供了生物学依据。
如今,人们已经拥有多种“杀死”病毒的手段,有些能破坏病毒结构而快速“杀死”病毒,如酒精(破坏囊膜)、高温(蛋白变性),这类也是目前消杀的常用手段,有些方法能在“杀死”病毒的基础上保留病毒的免疫原性或结构完整性,如甲醛(固定蛋白)、β-丙内酯(破坏核酸),病毒被它们“杀死”后常被用来制备疫苗或用作病毒的结构生物学研究。
如何才能“杀死”病毒?
其实,“杀死病毒”这个表述并不准确。病毒可谓是大自然以“极简主义”设计的生物体之一,其构造简单到仅剩蛋白/脂膜包裹的核酸。在体外它不会自我复制,没有能量消耗,也没有物质的合成与分解,貌似就是个“死”的状态,但它一旦侵入到细胞内,又可以将整个细胞变成自己的生产工厂,繁殖出更多的病毒颗粒来。因此,病毒是否有生命这个话题一直没有明确的答案。前文所说的“杀死”,其实是指让病毒失去繁殖的能力,也就是让病毒哪怕遇到宿主也别再“活过来”。在体外,这一过程在病毒学界则被称为“灭活”。
若想阻断病毒的繁殖,首先得要了解病毒的生活周期。病毒颗粒通过其表面的蛋白作为“钥匙”识别宿主并进入胞内,利用细胞的原料和能量复制自己的基因组,合成自己的蛋白,这些新合成的基因组和结构蛋白会装配成子代病毒颗粒后被释放到胞外。针对病毒的生命活动过程,灭活的思路大体分为三种,一种是破坏病毒的整体结或病毒的蛋白结构,使其丧失侵入细胞的能力,另一种是“锁住”病毒的蛋白,使其无法发挥功能,最后是破坏病毒的基因组,使其基因组无法在胞内复制。
电离辐射
电离辐射是一种能导致物质原子或分子发生电离的能量。三种主要的电离辐射技术是γ辐射、电子束和X射线。γ射线是一种由原子衰变裂解时放出的射线。电子束(eBeam)即为从电子束加速器中产生的高能电子束。X射线是由原子核外电子的跃迁或受激等作用产生的射线。虽然来源不同,但是对病毒灭活的机理基本类似。
电离辐射对病毒的破坏作用分为直接作用和间接作用。电离辐射可以直接将病毒体内分子的化学键打断,也可以使水分子发生电离。水分子辐解会产生各种各样的高活性自由基。尽管这些自由基的存在时间极短,但其可以与周围的蛋白和核酸反应,产生极大的破坏性,间接对病毒造成损伤。不过也有人认为电离辐射会主要攻击病毒的基因组而非蛋白质。电离辐射的灭活效果与辐射剂量有关,且不同病毒存在较大差异。随着发射源技术的更新与进步,电离辐射灭活技术也开始应用在了疫苗研发、进口国冷链包装消毒等领域。
灭活的病毒就是灭活疫苗吗?
谈到病毒的灭活,自然就离不开灭活疫苗这个话题。疫苗的作用是为了让我们的机体获得抗原特异的适应性免疫。在佐剂的辅助下,疫苗特定的免疫原性可让我们建立起特异的免疫记忆。当下次相同病原体侵袭时,机体便能快速激活相应的免疫系统,迅速清除病原体。在由疫苗介导的免疫记忆的建立中,疫苗的免疫原性起着关键的作用,灭活疫苗也不例外。
虽然灭活病毒有一定的安全保障,但是并非被灭活的病毒都还具有正确的免疫原性。从分子层面来讲,免疫原性的保留就是病毒表面蛋白完整性和完好性的保留。而从上文可知,病毒灭活的过程中会不可避免地影响蛋白结构。因此,在灭活疫苗研发的过程中需要寻找一个平衡点,即,在保证稳定彻底灭活病毒的基础上,尽可能提高病毒的免疫原性。从上个世纪初开始,科学家便不断尝试用不同的方式制备具有免疫原性的灭活疫苗,其中也有不少已经可以使用和普及的疫苗,包括脊髓灰质炎病毒疫苗、甲型肝炎病毒疫苗和狂犬病疫苗等。
目前,灭活疫苗的灭活方式仍以化学试剂为主,其制备流程大致为:病毒扩增——病毒灭活——化学试剂去毒——病毒纯化——添加佐剂——装瓶。虽然工艺看起来比较传统,但在研发的过程中仍有几大难点亟待解决:
1、在制备疫苗之前,需要获得一株具有良好免疫效应的稳定种子毒株;
2、需要选择合适的灭活剂、剂量及处理方式,以保证疫苗的免疫原性;
3、需要对灭活病毒进行高标准的纯化;
4、需要较高的工业水平以支撑超大规模的快速量产。
这些因素导致一般疫苗从开发到上市都会经历大约10年之久。不过,出于科研、工艺水平的进步和时间的紧迫性,我国在分离出首株新型冠状病毒毒种后不到一年半的时间内,自主研发并上市的灭活疫苗便已经获得了世卫组织的紧急使用授权。
相比于其他疫苗,灭活疫苗具有研发周期短、工艺相对成熟、安全较有保证、易于保存和运输的优势。但灭活疫苗自身也有一些弱点,如为应对病原快速变异的疫情,常需针对变异毒株更新疫苗,核酸类疫苗的更新速度相对灭活疫苗可能更快。此外,对于一些抗原稳定性较差的病毒,传统灭活方式难免会损坏免疫原性。有研究发现,新冠病毒经过0.05%的β-丙内酯4℃敷育36h后,其表面74%的蛋白构象已不再具备正确的免疫原性,这也侧面说明灭活疫苗的研制仍有很大的开发潜力。
友情链接:
主办单位:盘锦高新技术产业开发区管理委员会综合办公室 版权所有:盘锦市人民政府办公室
网站标识码:2111030025 ICP备案序号:辽ICP备2023000127号-1 辽公网安备21110302000162号
技术支持单位:0427.com 联系电话:0427-2875687